skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitney, Donna L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The hydrous Ca–Al silicates lawsonite and epidote group minerals (EGMs) are key phases in subduction-zone H2O and element cycling. In high-pressure–low-temperature metamorphic rocks, Fe in both minerals is typically assumed to be entirely Fe3+, which substitutes for Al in octahedral sites as a major component in most EGMs and as a minor component in lawsonite and zoisite. New Fe micro-X-ray absorption near-edge spectroscopy (μ-XANES) analyses show substantial Fe2+ in lawsonite in blueschist from New Caledonia and zoisite from an unknown locality. Analysed Fe-rich EGMs (epidote, clinozoisite) contain primarily Fe3+. Lawsonite and some EGMs in subducted oceanic crust may contain more Fe2+ than is currently known, with possible implications for understanding subduction redox processes and conditions and why they vary in different subduction zones. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Major influences on the architecture of orogens include the overall thermal conditions of orogeny (hot vs. cold) and the angle of collision (orthogonal vs. oblique). In the French Massif Central of the Variscan orogen, a cold‐orogen style crustal nappe architecture was interpreted in the Haut‐Allier, located in the core of the orogen. Based on this model, the Variscan orogenic crust is described as the superposition of three main allochthonous tectonic units juxtaposed along major thrust faults. However, based on a detailed structural analysis, we have found instead that the region is dominated by a network of anastomosing conjugate and coeval dextral and sinistral shear zones striking WNW‐ESE and ENE‐WSW, respectively. The dextral WNW‐trending shear zones are predominant, whereas the sinistral NE shear zones are mainly located in the eastern part of the massif. Between these sub‐vertical shear zones, a sub‐horizontal foliation is observed. Our results indicate that all planar fabrics were partially synchronous during suprasolidus low‐pressure‐high‐temperature conditions. Strain partitioning occurred from high‐temperature suprasolidus conditions to subsolidus retrogression and may represent orogen‐parallel flow, suggesting hot‐orogen style. These results call into question the validity of the crustal nappe model in the Haut‐Allier. Based on new structural data and related observations, we propose a new model in which metamorphic gaps between tectonic units are explained by the juxtaposition of different structural domains by displacement along strike‐slip shear zones. 
    more » « less
  3. Continents are constantly moving, and sometimes they collide. When continents collide, they crumple, and thicken. Mountain ranges form in this “crash zone.” Deep rocks at the bottom of a crash zone are hot because they are so deep. Hot materials—even rocks—become weak. Hot rocks deep underground can move by flowing, even though they are mostly solid. First, they flow sideways and then upwards in large blobs. When upward-moving blobs are only a few kilometers below the surface of the Earth, they cool and harden into bell shapes (domes). Flowing rocks cause the crash zone to collapse and spread out. Continents go back to their pre-collision thickness. They are not exactly the same as before collision, though: some rocks that used to be at the bottom of the continents are now at the top! We can see these formerly deep parts of continents in rock domes all over the world. 
    more » « less
  4. Abstract Lawsonite is a major host mineral of trace elements (TEs; e.g. REE, Sr, Pb, U, Th) and H2O in various rock types (metabasite, metasediment, metasomatite) over a wide range of depths in subduction zones. Consequently, the composition of lawsonite is a useful archive to track chemical exchanges that occurred during subduction and/or exhumation, as recorded in high-pressure/low-temperature (HP/LT) terranes. This study provides an extensive dataset of major element and TE compositions of lawsonite in HP/LT rocks from two mélanges (Franciscan/USA; Rio San Juan/Dominican Republic), two structurally coherent terranes (Tavşanlı/Turkey; Alpine Corsica/France), and the eclogite blocks of the Pinchi Lake/Canada complex. Bulk major and TE compositions were also determined for lawsonite-bearing host rocks to understand petrogenesis and assess compositional evolution. Most analyzed mélange and coherent-terrane metabasalts have normal mid-ocean ridge/back-arc basin basalt signatures and they preserve compositional evidence supporting interactions with (meta)sediment ± metagabbro/serpentinite (e.g. LILE/LREE enrichments; Ni/Cr enrichments). Most lawsonite grains analyzed are compositionally zoned in transition-metal elements (Fe, Ti, Cr), other TEs (e.g. Sr, Pb), and/or REE, with some grains showing compositional variations that correlate with zoning patterns (e.g. Ti-sector zoning, core-to-rim zoning in Fe, Cr-oscillatory zoning). Our results suggest that compositional variations in lawsonite formed in response to crystallographic control (in Ti-sector zoning), fluid–host rock interactions, modal changes in minerals, and/or element fractionation with coexisting minerals that compete for TEs (e.g. epidote, titanite). The Cr/V and Sr/Pb ratios of lawsonite are useful to track the compositional influence of serpentinite/metagabbro (high Cr/V) and quartz-rich (meta)sediment (low Sr/Pb). Therefore, lawsonite trace and rare earth element compositions effectively record element redistribution driven by metamorphic reactions and fluid–rock interactions that occurred in subduction systems. 
    more » « less
  5. Abstract Lateral movement of lithospheric fragments along strike-slip faults in response to collision (escape tectonics) has characterized convergent settings since the onset of plate tectonics and is a mechanism for the formation of new plates. The Anatolian plate was created by the sequential connection of strike-slip faults following ≥10 m.y. of distributed deformation that ultimately localized into plate-bounding faults. Thermochronology data and seismic images of lithosphere structure near the East Anatolian fault zone (EAFZ) provide insights into the development of the new plate and escape system. Low-temperature thermochronology ages of rocks in and near the EAFZ are significantly younger than in other fault zones in the region, e.g., apatite (U-Th)/He: 11–1 Ma versus 27–13 Ma. Young apatite (U-Th)/He ages and thermal history modeling record thermal resetting along the EAFZ over the past ~5 m.y. and are interpreted to indicate thermal activity triggered by strike-slip faulting in the EAFZ as it formed as a through-going, lithosphere-scale structure. The mechanism for EAFZ formation may be discerned from S-wave velocity images from the Continental Dynamics–Central Anatolian Tectonics (CD-CAT) seismic experiment. These images indicate that thin but strong Arabian lithospheric mantle extends ~50–150 km north beneath Anatolian crust and would have been located near the present surficial location of the Bitlis-Zagros suture zone (co-located with the EAFZ in our study area) at ca. 5 Ma. Underthrusting of strong Arabian lithosphere facilitated localization of the EAFZ and thus was a fundamental control on the formation of the Anatolian plate and escape system. 
    more » « less
  6. Recycling is not just for plastic. Did you know that the Earth recycles? Recycling happens because the outer part of the planet is made up of large moving pieces of rock. Some of these pieces, called tectonic plates, sink deep down into the Earth. The deeper they go, the more heat and pressure they experience. This causes chemical reactions, including melting of the minerals that make up the rocks. Elements and water trapped inside the melting minerals are released and erupt from volcanoes, returning to the surface. The Earth has recycled! In this article, we present new research on a mineral called lawsonite. Lawsonite only forms in plates that dive into the Earth. Lawsonite has returned to the Earth’s surface in a few rare places where we can collect and analyze it. The composition of elements inside the lawsonite mineral help us understand the deep part of the Earth recycling system. 
    more » « less
  7. null (Ed.)
  8. Abstract The effects of Arabia-Eurasia collision are recorded in faults, basins, and exhumed metamorphic massifs across eastern and central Anatolia. These faults and basins also preserve evidence of major changes in deformation and associated sedimentary processes along major suture zones including the Inner Tauride suture where it lies along the southern (Ecemiş) segment of the Central Anatolian fault zone. Stratigraphic and structural data from the Ecemiş fault zone, adjacent NE Ulukışla basin, and metamorphic dome (Niğde Massif) record two fundamentally different stages in the Cenozoic tectonic evolution of this part of central Anatolia. The Paleogene sedimentary and volcanic strata of the NE Ulukışla basin (Ecemiş corridor) were deposited in marginal marine to marine environments on the exhuming Niğde Massif and east of it. A late Eocene–Oligocene transpressional stage of deformation involved oblique northward thrusting of older Paleogene strata onto the eastern Niğde Massif and of the eastern massif onto the rest of the massif, reburying the entire massif to >10 km depth and accompanied by left-lateral motion on the Ecemiş fault zone. A profound change in the tectonic setting at the end of the Oligocene produced widespread transtensional deformation across the area west of the Ecemiş fault zone in the Miocene. In this stage, the Ecemiş fault zone had at least 25 km of left-lateral offset. Before and during this faulting episode, the central Tauride Mountains to the east became a source of sediments that were deposited in small Miocene transtensional basins formed on the Eocene–Oligocene thrust belt between the Ecemiş fault zone and the Niğde Massif. Normal faults compatible with SW-directed extension cut across the Niğde Massif and are associated with a second (Miocene) re-exhumation of the Massif. Geochronology and thermochronology indicate that the transtensional stage started at ca. 23–22 Ma, coeval with large and diverse geological and tectonic changes across Anatolia. 
    more » « less
  9. null (Ed.)